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Abstract

Clinical prognostic scoring systems have limited utility for predicting treatment outcomes in

lymphomas. We therefore tested the feasibility of a deep-learning (DL)-based image analy-

sis methodology on pre-treatment diagnostic computed tomography (dCT), low-dose CT

(lCT), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images and

rule-based reasoning to predict treatment response to chimeric antigen receptor (CAR) T-

cell therapy in B-cell lymphomas. Pre-treatment images of 770 lymph node lesions from 39

adult patients with B-cell lymphomas treated with CD19-directed CAR T-cells were ana-

lyzed. Transfer learning using a pre-trained neural network model, then retrained for a spe-

cific task, was used to predict lesion-level treatment responses from separate dCT, lCT, and

FDG-PET images. Patient-level response analysis was performed by applying rule-based

reasoning to lesion-level prediction results. Patient-level response prediction was also com-

pared to prediction based on the international prognostic index (IPI) for diffuse large B-cell

lymphoma. The average accuracy of lesion-level response prediction based on single whole

dCT slice-based input was 0.82+0.05 with sensitivity 0.87+0.07, specificity 0.77+0.12, and

AUC 0.91+0.03. Patient-level response prediction from dCT, using the “Majority 60%” rule,

had accuracy 0.81, sensitivity 0.75, and specificity 0.88 using 12-month post-treatment

patient response as the reference standard and outperformed response prediction based on

IPI risk factors (accuracy 0.54, sensitivity 0.38, and specificity 0.61 (p = 0.046)). Prediction

of treatment outcome in B-cell lymphomas from pre-treatment medical images using DL-

based image analysis and rule-based reasoning is feasible. This approach can potentially

provide clinically useful prognostic information for decision-making in advance of initiating

CAR T-cell therapy.

Introduction

Autologous CD19-directed chimeric antigen receptor (CAR) modified T-cell therapy has

improved the prognosis for adult patients with relapsed or refractory aggressive B-cell lympho-

mas [1–5]. Research to identify biomarkers of response to CAR T-cell therapies has focused on
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laboratory and/or pathology-based analyses. However, a radiologic image-based approach to

determine personalized prediction of response to CAR T-cell therapies would have unique

advantages including use of existing diagnostic images previously acquired for clinical pur-

poses, lack of invasiveness, availability of information regarding the regional properties of dis-

ease sites and unaffected organs body-wide, and productive efficiency.

Currently, deep learning (DL) techniques show considerable promise in image classifica-

tion [6–9], segmentation, and pattern recognition [10–15], and outperform most traditional

machine learning approaches due to their uncanny ability to learn local image patterns that far

exceed the ability of classical and handcrafted methods. Transfer learning is a DL approach in

which a trained model (DL network) for one task is used as a starting point to continue to

train the model for another task. It can improve the prediction accuracy for DL neural net-

works that were trained with only medical images [16, 17]. For example, AlexNet is a common

neural network used in transfer learning which has been trained on millions of non-medical

images and widely adopted to classify images [18].

The purpose of this study is to assess the feasibility of a DL-based image analysis methodol-

ogy applied to pre-treatment diagnostic computed tomography (dCT) images, low-dose CT

(lCT) images from positron emission tomography/computed tomography (PET/CT) scans,

and 18F- fluorodeoxyglucose (FDG) PET images from PET/CT scans to predict lesion-level

treatment response to CAR T-cell therapy, and to apply a rule-based reasoning methodology

to DL output to predict patient-level response for patients with diffuse large B-cell lymphoma

(DLBCL) and follicular lymphoma (FL).

Materials and methods

This retrospective study was conducted following approval from the Institutional Review

Board at the University of Pennsylvania along with a Health Insurance Portability and

Accountability Act waiver.

Study cohort and data sets

Pre-treatment diagnostic CT and PET/CT images of the neck, chest, abdomen, and pelvis pre-

viously obtained on a clinical research protocol using autologous T cells that express a

CD19-directed CAR (CTL019, later designated tisagenlecleucel) to treat patients with relapsed

or refractory DLBCL or FL (ClinicalTrials.gov number, NCT02030834) were utilized for this

study. This study included response prediction at both the lesion level and the patient level,

which included 26 patients (20M, 6F; median age 57 years (range 28–74)) with DLBCL and 13

patients (7M, 6F; median age 62 years (range 43–72)) with FL. The patient inclusion and exclu-

sion schema are shown in Fig 1.

All individual lymph node disease sites were identified using pre-treatment images followed

by determination of ground truth lesion-level responses for all individual nodal lesions via com-

parison of pre-treatment and post-treatment images by an expert radiologist. Lesion-level

response to treatment was defined by interval decrease in size or metabolic activity or interval

resolution of a lesion between pre-treatment and post-treatment images, whereas lesion-level

non-response was defined as lack of change or interval increase in size or metabolic activity of a

lesion. Post-treatment dCT and PET/CT images utilized to determine ground truth lesion-level

responses were acquired 94.0±33.2 days after pre-treatment images. Extranodal lesion sites, as

well as splenic and Waldeyer’s ring nodal-equivalent lesions, were not considered given the

small number of lesions encountered at these anatomic locations. The number of International

Prognostic Index (IPI) risk factors present at the time of pre-treatment imaging for each patient

with DLBCL was recorded [19]; 8 patients had 0–1 risk factors (low risk group), 11 patients had
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2 (low-intermediate-risk group), 4 patients had 3 (high-intermediate risk group), and 3 patients

had 4–5 (high risk group). Patient-level response status based on post-treatment scans acquired

12 months after pre-treatment scans was also determined for all patients.

DL for lesion-level treatment response prediction and evaluation

Lesion-level response prediction was performed by using volume of interest (VOI)-based and

whole slice-based (non-VOI) approaches using CAVASS software [20] to place a rectangular

box around each abnormal lymph node in 3D space (see supplemental text for details regarding

VOI settings). Every lesion was labeled with a 0 or 1, where 0 indicated a lesion without

response to treatment and 1 indicated a lesion with response to treatment. In total, 770 lymph

node lesions (402 by dCT; 214 by lCT; 154 by PET) were assessed (see supplemental S1 Table

for response category details). Five input scenarios were considered for the DL network: A sin-

gle VOI-restricted image slice passing through the mid-portions of lesions (1 VOI-slice), three

contiguous VOI-restricted image slices passing through the mid-portions of lesions (3 VOI-

slices), a single whole-image slice passing through the mid-portions of lesions (1 whole-slice),

three contiguous whole-image slices passing through the mid-portions of lesions (3 whole-

slices), and combined single VOI-restricted and single whole-image slices passing through the

mid-portions of lesions in two channels of one input sample (combined-slices). Axial slices

were selected so as to avoid having different lesions within the same whole slice. In total, 15

combinations (5 input scenarios × 3 image modalities) were tested. To improve test statistics,

multi-fold cross validation was conducted by repeating each experiment 10 times for different

combinations of 6:2:2 (training: validation: testing) data set division. Data augmentation [21,

22] was used on training data sets to improve training performance. In total, 3040 experiments

Fig 1. Patient inclusion and exclusion schema for this study.

https://doi.org/10.1371/journal.pone.0282573.g001
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were conducted (2400 with transfer learning and 640 with incremental learning). Transfer

learning was performed by loading a pre-trained neural network (AlexNet [18]), modifying its

output layers/decision by replacing the last three layers with a fully connected layer, a Softmax

layer, and a binary classification output layer for the specific classification purpose, and retrain-

ing the network with specific training samples. AlexNet has a simple structure (with only 5 con-

volutional layers) and is more easily retrained to test the proposed approach. Although only the

pre-trained “AlexNet” was used here, the same framework can be easily configured using other

more recent pre-trained neural networks such as VGG [23] or ResNet [24] (with SGD [25]).

Incremental learning was performed to predict response on lCT and PET by employing a dCT

model utilized in transfer learning, and then finely tuning this model by using lCT and PET

training samples. Please see the supplemental text, S2 Table and S1 and S2 Figs for further

details regarding data augmentation and the deep learning experimental set up.

The accuracy, sensitivity, and specificity of the lesion-level prediction task and the area

under the curve (AUC) for the receiver operating characteristic (ROC) curve were then evalu-

ated. Two-sided t-testing was utilized to compare experimental results from different input

scenarios, hyperparameter settings, and image modalities. A p value of< 0.05 was considered

as statistically significant.

Rule-based reasoning for patient-level treatment response prediction and

evaluation

Patient-level response prediction was subsequently performed in all 39 patients using a rule-

based reasoning approach applied to lesion-level prediction results from the DL network. After

lesion-level response was predicted using transfer learning, two rules, the “All” rule and the

“Majority” rule, were utilized to determine patient-level response. For the “All” rule, a patient

responder is one in whom all lesions have responded, and a patient non-responder is one in

whom at least one lesion has not responded. For the “Majority” rule, a patient responder is one

in whom the majority of all lesions have responded (using thresholds of either 60% for the

“Majority 60%” rule or 70% for the “Majority 70%” rule), and a patient non-responder is one in

whom the majority of lesions (using thresholds of either 60% or 70% of all lesions) have not

responded. The reference standard for patient-level response (responder/non-responder) was

based on the findings on cross-sectional imaging scans acquired 12-months after the date of

pre-treatment scans. Also, since the IPI is currently used in clinical practice to assess risk in

patients with DLBCL, we compared its performance to that of our rule-based method in the 26

patients with DLBCL (10 responders and 16 non-responders). For the IPI method, DLBCL

patients were categorized into responder and non-responder groups by using different thresh-

olds based on the number of IPI risk factors (IPI�1, IPI�2, and IPI�3), where the lower

number groups were considered as responder groups. The accuracy, sensitivity, and specificity

of the patient-level prediction task were then evaluated for rule-based and IPI-based

approaches, utilizing Pearson’s chi-square test for statistical comparisons.

Results

Lesion-level treatment response prediction results

The diagnostic performance results of lesion-level response prediction using transfer learning

for the five input scenarios from dCT, lCT, and PET image modalities are shown in Table 1

(with p values provided in S3 and S4 Tables), and the ROC curves are shown in Fig 2. The pre-

dictive performances of 1 VOI-slice and 3 VOI-slices input scenarios on dCT, lCT, and PET

were substantially lower than those of the corresponding whole slice-based input scenarios.
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For example, the accuracy of 1 VOI-slice vs. 1 whole-slice input from dCT was 0.68±0.05 vs.

0.82±0.05, respectively (p< 0.0001) with AUC 0.59±0.04 vs. 0.91±0.03, respectively

(p< 0.0001), and the accuracy of 3 VOI-slices vs. 3 whole-slices input from dCT was 0.65

±0.05 vs. 0.84±0.05, respectively (p< 0.0001) with AUC 0.52±0.07 vs. 0.90±0.05, respectively

(p< 0.0001). The predictive performances of 1 whole-slice and 3 whole-slices inputs from

dCT (AUC 0.91±0.03 vs. 0.90±0.05, respectively, p = 0.435) were similar, as were those from

lCT (AUC 0.92±0.08 vs. 0.94±0.07, respectively, p = 0.66) and from PET (AUC 0.93±0.07 vs.

0.95±0.06, respectively, p = 0.46). The predictive performances of combined-slices input from

dCT, lCT, or PET were not statistically different from those based on 1 whole-slice input. For

dCT, lesion-level response prediction using 1 whole-slice input had accuracy 0.82+0.05, sensi-

tivity 0.87+0.07, specificity 0.77+0.12, and AUC 0.91+0.03. For lCT, lesion-level response pre-

diction using 1 whole-slice input had accuracy 0.91+0.06, sensitivity 0.94+0.06, specificity 0.75

+0.32, and AUC 0.92+0.08.

For PET, 1 whole-slice input had accuracy 0.87+0.06, sensitivity 0.90+0.06, specificity 0.77

+0.19, and AUC 0.93+0.07. Although the accuracy of 1 whole-slice input from dCT was lower

than the accuracy from lCT (p = 0.002) and PET (p = 0.08), the AUC and specificity of 1

whole-slice input did not statistically differ between dCT, lCT, and PET. There were no signifi-

cant differences in lesion-level response prediction accuracy or AUC between transfer learning

and incremental learning approaches using 1 whole-slice input from lCT or PET. Further

details regarding experimental set up and results for lesion-level response prediction based on

transfer learning, incremental learning, different input scenarios, different image modalities,

and different hyperparameter settings are included in the supplemental text, S5–S8 Tables and

S3 and S4 Figs.

Patient-level treatment response prediction results

The results of patient-level response prediction using the rule-based reasoning approach from

dCT, lCT, and PET relative to the reference standard of 12-month post-treatment patient-level

response status are shown in Table 2. These were derived from lesion-level response predic-

tions based on the 1 whole-slice input scenario and transfer learning. (Comparable results

based on the 3 whole-slices input scenario are reported separately in supplemental S9 Table).

Patient-level response prediction for all patients from dCT based on the “Majority 60%” rule

had accuracy 0.79, sensitivity 0.83, and specificity 0.75, which was not significantly different

than that from lCT (with accuracy 0.65, sensitivity 0.60, and specificity 0.75) (p = 0.80) and

PET (with accuracy 0.56, sensitivity 0.55, and specificity 0.57) (p = 0.87). In addition, patient-

level response prediction for DLBCL patients from dCT based on the “Majority 60%” rule had

accuracy 0.81, sensitivity 0.75, and specificity 0.88, which was significantly better than the best

Table 1. Diagnostic performance of lesion-level treatment response prediction in lymphoma using transfer learning (for 5 input scenarios and 3 image modalities

using 40 epochs and batch size 5). Mean and standard deviation values are displayed. VOI = volume of interest, dCT = diagnostic computed tomography, lCT = low-

dose computed tomography, PET = positron emission tomography, Acc = accuracy, Sens = sensitivity, Spec = specificity, AUC = area under the curve.

dCT lCT PET

Input scenario Acc Sens Spec AUC Acc Sens Spec AUC Acc Sens Spec AUC

1 VOI-slice 0.68 ±0.05 0.70 ±0.02 0.58 ±0.16 0.59 ±0.04 0.68 ±0.05 0.70 ±0.02 0.58 ±0.16 0.60 ±0.11 0.68 ±0.05 0.70 ±0.02 0.58 ±0.16 0.51 ±0.14

1 whole-slice 0.82 ±0.05 0.87 ±0.07 0.77 ±0.12 0.91 ±0.03 0.91 ±0.06 0.94 ±0.06 0.75 ±0.32 0.92 ±0.08 0.87 ±0.06 0.90 ±0.06 0.77 ±0.19 0.93 ±0.07

3 VOI-slices 0.65 ±0.05 0.68 ±0.02 0.52 ±0.21 0.52 ±0.07 0.79 ±0.06 0.84 ±0.02 0.21 ±0.33 0.53 ±0.17 0.65 ±0.02 0.68 ±0.01 0.48 ±0.09 0.53 ±0.07

3 whole-slices 0.84 ±0.05 0.90 ±0.04 0.76 ±0.12 0.90 ±0.05 0.90 ±0.05 0.95 ±0.04 0.74 ±0.20 0.94 ±0.07 0.90 ±0.07 0.95 ±0.05 0.81 ±0.19 0.95 ±0.06

combined-slices 0.84 ±0.04 0.89 ±0.03 0.76 ±0.10 0.91 ±0.03 0.93 ±0.03 0.96 ±0.03 0.83± 0.14 0.98 ±0.02 0.87 ±0.07 0.93 ±0.07 0.73 ±0.16 0.92 ±0.08

https://doi.org/10.1371/journal.pone.0282573.t001
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IPI-based patient-level response prediction using an IPI risk factor threshold of<1 (with accu-

racy 0.54, sensitivity 0.38, and specificity 0.61) (p = 0.046).

For dCT, the accuracy of the “Majority 60%” rule (0.79) was not statistically significantly

different than that of the “Majority 70%” rule (0.71) (p = 0.38) but was statistically significantly

greater than that of the “All” rule (0.61) (p = 0.027). For lCT, the accuracies of the “Majority

60%” and “Majority 70%” rules (0.65) were identical and not statistically significantly different

than that of the “All” rule (0.52) (p = 0.20). For PET, the accuracies of the “Majority 70%” and

“All” rules (0.61) were identical and not statistically significantly different than that of the

“Majority 60%” rule (0.56) (p = 0.73).

Discussion and conclusions

In this study, we investigated the feasibility of a novel deep learning image analysis methodol-

ogy applied to pre-treatment diagnostic CT, low-dose CT, and FDG-PET images to predict

lesion-level treatment response to CAR T-cell therapy in patients with lymphoma, and then

used a rule-based reasoning approach to assess the feasibility of predicting patient-level

response. To our knowledge, such approaches have not yet been studied in this clinical

context.

We showed that prediction of treatment outcome in B-cell lymphomas from pre-treatment

medical images using DL-based image analysis at the lesion level and rule-based reasoning at

the patient level is feasible at a high level of accuracy. We also demonstrated that patient-level

response prediction using rule-based reasoning outperformed prediction based on clinical IPI

risk factors in patients with DLBCL.

Recent research on outcome prediction in patients with DLBCL using regression and

machine learning methods has focused on use of clinical and pathologic information. For

Fig 2. Receiver operator characteristic (ROC) curves for diagnostic performance of lesion-level treatment response prediction in

lymphoma using transfer learning (on test data sets for 5 input scenarios and 3 image modalities using 40 epochs and batch size 5).

TP = true positive fraction, FP = false positive fraction, AUC = area under the curve, dCT = diagnostic computed tomography, lCT = low-

dose computed tomography, PET = positron emission tomography.

https://doi.org/10.1371/journal.pone.0282573.g002
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example, Galaznik et al created a model for predicting health outcome in patients with DLBCL

treated with standard of care by using lasso logistic regression [26]. Biccler et al used a machine

learning approach to achieve optimum outcome prediction in patients with DLBCL, which

combined several predicted survival curves into one by means of a weighted average [27]. The

weights were selected so that the cross-validated integrated Brier score (IBS) was minimized,

and different models, such as Cox proportional hazard (CPH) model, penalized CPH models,

and accelerated failure time (AFT) model, were selected for forming survival curves. Biccler

et al reported a concordance index (an AUC) from C-Statistic of 0.756 for Danish and 0.744

for Swedish cohorts [26, 27]. Reinart et al reported on the value of CT-based textural features

and volume-based PET parameters for response assessment in patients with DLBCL undergo-

ing CAR T-cell therapy [28]. Although they showed that certain tumor features at baseline

such as whole-body metabolic tumor volume, whole-body total lesion glycolysis, and CT-

based texture properties were statistically significantly different between patients with com-

plete response vs. those with partial response to treatment, no prediction analysis was actually

performed based on baseline imaging features and no separate testing data set was utilized.

Although deep learning based prediction typically requires a large amount of training sam-

ples, once the training procedure has been completed, the approach is fully automatic. Further-

more, it can be performed in an end-to-end mode without need for hand-crafted features

since optimal features are automatically extracted and refined during training, in contradis-

tinction to traditional image analysis approaches. Also, deep learning has a good non-linear

regression ability and can handle multiple high dimensional and complex features, which may

be challenging for traditional image analysis methods. Use of an image-based approach to pre-

dict tumor treatment response has advantages compared to a pathology-based approach, given

that pathology information may not always be available at baseline and requires an invasive

procedure to obtain tumor samples, is reflective only of the properties of those specific tumor

lesions that were sampled which may or may not be representative of other tumor lesions in

the body, and does not provide information about the quantity or spatial distribution of tumor

throughout the body.

One limitation of this study is the relatively small number of patients who were assessed,

which precluded use of machine learning approaches for patient-level response prediction.

However, a large number of individual lymphoma lesions were available for evaluation in

these patients and data augmentation techniques were utilized, enabling high diagnostic

Table 2. Diagnostic performance of patient-level treatment response prediction in lymphoma using rule-based reasoning approach (from lesion-level response pre-

dictions using 1 whole-slice input scenario, 3 image modalities, and transfer learning) compared to International Prognostic Index risk factors for diffuse large B-

cell lymphoma (DLBCL) patients. Note that results are shown for entire subject cohort (All) and for DLBCL subject cohort. dCT = diagnostic computed tomography,

lCT = low-dose computed tomography, PET = positron emission tomography, IPI = International Prognostic Index, Acc = accuracy, Sens = sensitivity, Spec = specificity.

Patient response with "All" Rule Patient response with "Majority" Rule

Subject cohort Modality All lesions Responded At least "60%" lesions responded At least "70%" lesions responded

Acc Sens Spec Acc Sens Spec Acc Sens Spec

All dCT 0.61 1.00 0.56 0.79 0.83 0.75 0.71 0.88 0.65

lCT 0.52 0.50 0.54 0.65 0.60 0.75 0.65 0.60 0.75

PET 0.61 0.60 0.63 0.56 0.55 0.57 0.61 0.58 0.67

DLBCL dCT 0.69 1.00 0.64 0.81 0.75 0.88 0.75 0.80 0.73

lCT 0.56 0.44 0.67 0.56 0.45 0.71 0.56 0.45 0.71

PET 0.57 0.50 0.67 0.43 0.38 0.50 0.50 0.44 0.60

IPI� 1 Acc = 0.54; Sens = 0.38; Spec = 0.61

IPI� 2 Acc = 0.42; Sens = 0.37; Spec = 0.57

IPI� 3 Acc = 0.27; Sens = 0.30; Spec = 0.00

https://doi.org/10.1371/journal.pone.0282573.t002
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performance of lesion-level response prediction. Furthermore, we were still able to achieve a

high diagnostic performance of patient-level prediction using a rule-based reasoning

approach. One other limitation is that we restricted our attention to lymph node lesions only,

given the small numbers of extranodal, splenic, and Waldeyer’s ring lesions in our patient

cohort. We may include other such lesion inputs in future larger scale studies.

In summary, we have demonstrated the feasibility of a novel deep learning image analysis

methodology using pre-treatment CT and PET/CT images to accurately predict lesion-level

responses in patients with lymphomas treated with CAR T-cell therapy. We also demonstrate

the feasibility of using a rule-based reasoning approach to accurately predict patient outcomes.

Our results suggest that these approaches may provide new information that can be used to

predict which patients will or will not respond to treatment in advance of initiating therapy.

Supporting information

S1 Fig. Strategy of transfer learning and incremental learning utilized for lesion-level

response prediction.

(TIF)

S2 Fig. Deep learning-based architecture utilized for lesion-level treatment response pre-

diction. CNN = convolutional neural network, ReLU = rectified linear unit, Conv. = convolu-

tional.

(TIF)

S3 Fig. Receiver operator characteristic (ROC) curves for diagnostic performance of

lesion-level treatment response prediction in lymphoma using incremental learning vs.

transfer learning (on test data sets for 1 whole-slice and 3 whole-slice input scenarios and

3 image modalities using 40 epochs and batch size 5). TP = true positive fraction, FP = false

positive fraction, AUC = area under the curve, dCT = diagnostic computed tomography,

lCT = low-dose computed tomography, PET = positron emission tomography.

(TIF)

S4 Fig. Training / validation curves from one of the 10 repeat experiments on diagnostic

computed tomography (dCT) using transfer learning with batch size (B) = 5 and number

of epochs (E) = 80.

(TIF)

S1 Table. Summary of response categories of lymphoma patients who received CAR T-cell

therapy. Patients categorized as (1) full responders (F-R) (i.e., where all lesions responded),

(2) full non-responders (F-NR) (i.e., where no lesions responded), and (3) partial responders

(P-R) (i.e., where only some lesions responded). dCT = diagnostic computed tomography,

lCT = low-dose computed tomography, PET = positron emission tomography.

(DOCX)

S2 Table. Experiments with transfer learning for lesion-level treatment response predic-

tion. dCT = diagnostic computed tomography, lCT = low-dose computed tomography,

PET = positron emission tomography, VOI = volume of interest.

(DOCX)

S3 Table. P values of t-test comparisons of diagnostic performance between 5 input scenar-

ios for lesion-level treatment response prediction in lymphoma. Cells with statistically sig-

nificant p values are highlighted. dCT = diagnostic computed tomography, lCT = low-dose

computed tomography, PET = positron emission tomography, VOI = volume of interest,
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Acc = accuracy, Sens = sensitivity, Spec = specificity, AUC = area under the curve.

(DOCX)

S4 Table. P values of t-test comparisons of diagnostic performance between 3 image

modalities (for 1 whole-slice and 3 whole-slices input scenarios) for lesion-level treatment

response prediction. Cells with statistically significant p values are highlighted.

dCT = diagnostic computed tomography, lCT = low-dose computed tomography,

PET = positron emission tomography, Acc = accuracy, Sens = sensitivity, Spec = specificity,

AUC = area under the curve.

(DOCX)

S5 Table. a. Diagnostic performance of lesion-level treatment response prediction in lym-

phoma from diagnostic computed tomography (dCT) images for 5 input scenarios (using 40

epochs and batch size 5). Mean and standard deviation values are displayed. VOI = volume of

interest, AUC = area under the curve. b. Diagnostic performance of lesion-level treatment

response prediction in lymphoma from low-dose computed tomography (lCT) images for 5

input scenarios (using 40 epochs and batch size 5). Mean and standard deviation values are

displayed. VOI = volume of interest, AUC = area under the curve. c. Diagnostic performance

of lesion-level treatment response prediction in lymphoma from positron emission tomogra-

phy (PET) images for 5 input scenarios (using 40 epochs and batch size 5). Mean and standard

deviation values are displayed. VOI = volume of interest, AUC = area under the curve

(ZIP)

S6 Table. Diagnostic performance of lesion-level treatment response prediction in lym-

phoma using incremental learning vs. transfer learning (for 2 input scenarios) on low-dose

computed tomography (lCT) and positron emission tomography (PET) image modalities.

Mean and standard deviation values are displayed. Acc = accuracy, Sens = sensitivity,

Spec = specificity, AUC = area under the curve.

(DOCX)

S7 Table. Diagnostic performance of lesion-level treatment response prediction in lym-

phoma using transfer learning on 1 whole-slice input scenario from diagnostic computed

tomography (dCT) based on different hyperparameters of batch size (B) and number of

epochs (E). Mean and standard deviation values are displayed. Acc = accuracy,

Sens = sensitivity, Spec = specificity, AUC = area under the curve.

(DOCX)

S8 Table. P values of t-test comparisons of diagnostic performance between selected hyper-

parameter combinations of transfer learning (from S7 Table) for lesion-level treatment

response prediction (using 1 whole-slice input scenario from diagnostic computed tomog-

raphy (dCT)). Cells with statistically significant p values are highlighted. B = batch size,

E = number of epochs, Acc = accuracy, Sens = sensitivity, Spec = specificity, AUC = area

under the curve.

(DOCX)

S9 Table. Diagnostic performance of patient-level treatment response prediction in lym-

phoma using rule-based reasoning approach (from lesion-level response predictions using

3 whole-slices input scenario, 3 image modalities, and transfer learning) compared to

International Prognostic Index risk factors for diffuse large B-cell lymphoma (DLBCL)

patients. Note that results are shown for entire subject cohort (All) and for DLBCL subject

cohort. dCT = diagnostic computed tomography, lCT = low-dose computed tomography,

PET = positron emission tomography, IPI = International Prognostic Index, Acc = accuracy,
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Sens = sensitivity, Spec = specificity.

(DOCX)

S1 Data.

(XLSX)
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